Most modern mobile devices use lithium ion batteries, which consist of two main parts: a pair of electrodes and the electrolyte between them. The materials that these electrodes are made of varies, but they all rely on the chemistry of lithium. It’s a reactive metal, which means that it has a tendency to combine with other elements. Pure lithium is so reactive, it can catch fire in the air, so most batteries use a safer form called lithium cobalt oxide. Between the two electrodes is the electrolyte, which is usually a liquid organic solvent that allows electrons to flow between them. When a lithium ion battery is charged, the lithium cobalt oxide molecules capture and hold electrons, which they then release when the battery is in use, such as when it is running your cell phone.
Lithium ion is the most common form of battery because it can store the most energy in the smallest space. That’s measured in terms of specific energy density, which refers to how much energy, in Watt-hours, a kilogram of battery could hold. For lithium ion, the figure can be between 150 and 250 Wh/kg, while a nickel metal hydride (or NiMH) battery can hold about 100 Wh/kg. In other words, lithium ion batteries are smaller and lighter than other types, and that means smaller devices with longer battery life.
Cell Phone Battery capacity
The capacity of a mobile battery is measured in milliampere-hours (or mAh), which indicates how much energy the battery can deliver over time. For instance, if a battery has a rating of 1000 mAh, it could deliver 1000 milliamps of power for 1 hour. If your device uses 500 milliamps of power, the battery should last about 2 hours.
The battery life of a device is a bit more complicated than that, though, as the amount of power a device uses changes depending on what it is doing. If the device’s screen is on, the radio is transmitting, and the processor is working hard, it will use more energy than if the screen is off and the radio and processor are idle.
That’s why you should treat battery-life claims with caution—the manufacturer can extend the battery-life number by turning the screen brightness down, or by turning off parts of the device. If you are curious, you can use an app that monitors the power consumption and NOKIA BL-5C Mobile Phone Battery status of your mobile device, such as Battery Monitor Widget for Android or Battery Life Pro for iOS devices.
The future battery power
Battery technology is always improving, with labs around the world looking for new battery technologies to replace lithium as well as new approaches to building lithium ion batteries. Among the new technologies, a lot of work has gone into supercapacitors, in which the battery stores energy electrically and then releases it, like a flash gun. Supercapacitors could allow for much quicker charging, as little chemical change is involved, but current supercapacitors can deliver power only in short bursts, which is the opposite of what most mobile devices need. Fuel cells that use hydrogen to generate electricity are also coming soon.
1 thought on “Everything you need to know Li-ion mobile phone batteries”
Comments are closed.